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Abstract

Matching images based on a Hausdorff measure
has become popular for computer vision applications.
However, no probabilistic mmodel has been used inthese
applications, This limitsthe formal treat mentof sev-
eral issues, such as feature uncertainties and prior
knowledge. In this paper, wedevelop a probabilistic
formulation jor Hausdorff maichingin terms oj maxr-
tmum likelihood estimation. This formulation yields
several benefits with respect to previous Hausdorff
matching formulation. The techniques are applied to
a mobile robot self-localization problem,

1 Introduction

The use of variants of the HausdorfT distance hasre-
cently become popular in image matching applications
(see, for example, [4, 6,8, 13, 14, 15]). J$'bile these
methods have been largely successful, they have lacked
a probabilistic formulation of the matching process,
and this has made it difficult toincorporate probabilis-
tic information, such as feature uncertainties and the
prior probability distribution of model positions, into
these applications. This work addresses these issues by
introducing a probabilistic formulation of Hausdor(l
matching.

After a brief review of Hausdorfl matching tech-
niques, we describe a probabilistic formulation of
Hausdorft matching based on the principal of maxi-
mum likelihood estimation. In this formulation, we
seek local maxima of the likelihood function over the
possible model positions, assuming that the model ap-
pears in the image. Note that this formulation can be
applied even when the model does not appear in the
image or appears multiple tiimes. We must simply set
the criterion determining which model positions are
reported as likely hypotheses appropriately, Whena
particular probability distribution function(PDF) is
introduced for thedistance of each model feature from

an image feature in the image, this formulation yields
the conventional Hausdorfl matching method. Alter-
nate PD}’s yield new and interesting variations of the
method.

'This probabilistic formulation of Hausdorfl match-
ing yields several benefits, It allows the incorporation
of prior knowledge, such as the prior probability distri-
bution of model positions, into the matching process.
It also allows formal treatment of feature uncertain-
ties inthe search for likely model positions. In addi-
tion, with this formulation we can consider arbitrary
probability distribut ions for the locations of the image
features, rather than the sumple two-valued support
function that corresponds to conventional Hausdorff
matching methods.

We discuss efficient techniques for searching the
pose space in this formulation and give experimen-
tal evidence that indicates improved accuracy in the
recognition and localization of objects in images is
achieved. Finally, we apply these techniques to a mo-
bile robot self-localization application that performs
matching between terrain occupancy maps to deter-
mine the robot’'s position.

2 Hausdorff matching

This section reviews a variation of the Hausdorfl
distance commonly used to performn image matching,
as well as the application of thismeasure to matching
inbinary images and an efficient search strategy for
finding the relative image positions where the measure
meets sotne criterion.

2.1 Hausdorff measure

For two sets of points A4 an, 1 B, the directed Haus-
dorff distance from Ato B is:

h(A, B) = maxmin|fa — b}, @
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Figure 1: Directed Hausdorff distance between point sets.
The white points are set X and the black points are set Y.

where ||-]| is any norm. "I his yields the maximum dis-
tance from a point iu set A to its nearest point in set
Band is illustrated inFigure 1. Notice, however, that
a single outlier in A can change this distance by an
arbitrary amount. For image matching, where A is
usually a set of model pointsand B is a set of image
points, we wish to allow outliers. It is thus comimon
to use the partial distance [3]:
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This yields the Hausdorf distance among the K poinuts
in A that best match points iu B (and thus allows
[A] - K outliers iu the set .4).

A variation on the partial Hausdorfl distance is
to determine the maximum number of pointsin the
model such that distance is below a given error thresh-
old:

hp(d, BY<é (3)
Let Ns(A, B) denote the maxtmuin A for which (3)
is true. The ratio Fs(A4, B) = L‘ﬁ%‘—lm is called the

Hausdorff fraction,since it is the fraction of the points
in A that match a pointin B up to the error é. This
formulation is easy to work with, siuce Ns(A,B) is
simple to compute, and we examine this variation of
Hausdorfl matching in this paper,

Note that pre-setting some maximum error é,and
deter mining the model positions such that Fj is shove
some threshold 7', yields equivalent results to setting
the model fraction to 7' aud determining the model
positions with part ial HausdorfT distance no greater
than é. This formulation of the Hausdorfl metric does
not change the solutions that are found.

2.2 Application to binary images
We concentrate on the application of these tech-

nmage edge
maps). Ilach pixel in such animage takes a value

niques t o binary digital images (e.g.

of O or 1. We say that the pixels with a value of 1 are
occupred aud those with a value of O are unoccupied,

Let Al he a modelimage or template and [ be
animage that mmay contain au instance of the model.
Both M and | canbe considered to be discrete sets of
poiuts corresponding to the locations of the occupied
pixelsinthe image or template. Let t be a particular
position of the model withrespect to the image. This
model position can be thought ofa function that maps
tile model points into the image; t(A/) is thus the set
of wodel points after mapping them according to {.

Now, consider the dilation o f the image by the
structuring element Ss that consists of all of the pix-
els within é of the origin with respect to some norm.
The dilated image, I5 = I S (where & denotes the
Minkowskisurn or morphological dilation operator),
has an occupied pixel at eachlocation that is within é
of an occupied pixelinthe original image. Let Is(m)
denote tile value of J; (i.e. 0 or 1) at the position
of some model pixel, m. We can write the Hausdorfl
fraction (as a function of themodel position) as fol-
low's:

FM), = i 3 Igm) (4)
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23 E flicient search strategy

The best known search strategy for locating model
positions that satisfy some criterion with respect to
the HausdorfT fraction is a multi-resolution search
strategy that examines a hierarchical cell decomposi-
tion of the space of possible model positions [12]. This
method divides the space of model positions iuto rec-
tilinear cells and determ ines which cells iay contain a
position satisfying the criterion using some test. The
cells that pass tile test are divided iuto subcells, which
are examined recursively. The rest are pruned.

The key to this method of searching the parameter
space is a quick method to conservatively test whether
a cell cancontain a position satisfying the criterion.
This test is allowed to fail to rule out a cell that does
not contain any positions satisfying the criterion, but
it should never rule out a cell that does contain such
aposition.

[t is typicalin this method to consider only the
model positions in some underlying discretization o f
the pose space. When a cell of this space is reached
that contains a single positionin the discretization,
this position is tested explicitly.

In order to develop an eflicient testing mechanism
for determining whether a cell can be pruned, it is



useful to consider the distance transform of the image.
The distance transform of a binary image mneasures the
distance from each pixel in the image to the closest
occupied pixel [1 1]. Denote the distance transform of
image I(z, y) by Di{z, y).

To test a cell C of possible model positions, the
discrete pose c closest to the center of the cell is first
determined. The maximum distance between the loca-
tion to which a modelpixel is mapped into the image
by ¢ and by any other pose in the cell is thencom-
puted. We call this distance the image-mapped radius
of the cell and denote it A_:

Ac = x’:leaxrapea“\i [lp(r) — e(m)}]

Now, if we seek positions at which Ks{({(AM), 1) is
no less than 7', then, to test the cell, we count the
number of model points for which the probe into the
distance transform at the appropriate location is no
larger than § + AC. If this number is less than 71’
then we can prune the cell, since it cannot contain a
model position that matches T pixels in themodel to
pixels in the image up to the error é [12].

When a cell cannot be pruned, it is divided into
multiple subcells, and the procedure is applied recur-
sively to each of the subcells. This process continues
until all of the cells in the pose space have been ex-
hausted.

3 Probabilistic formulation

We now describe a probabilistic formulation of
Hausdorfl matching using the principal of maximum
likelihood estimation. To formalize the problem,
let us say that we have a set of model features,
M={u,...,un} and a set of image features, I =
{vi, . ... Un}. Let t€7T',be arandom variable describ-
ing the position of the model in the image. Thismakes
an implicit assumption that exactly oneinstance of
the model appears in the inage. However, we shall
see that the cases where the model does not appear,
or the model appears in multiple instances, can be
easily handled in this formulation.

To formulate the problem in terins of maximum
likelihood estimation of themodel position, we must
have some set of measurementsthat are afunction of
the position of the model. We use the distance from
each model pixel (at the position specified by t) to
its closest occupied pixel in themage as our set of
measurements.  Fach distance can be found simply
by looking up the position of themodel pixel in the
distance transform of the image. These distances are

random variables that we denote by D1,.... D,. J¥bile
these distances arc not independent, we model them as
such. Recent work on determining the probability of
a fase podtive for Hausdorff matching [1, 10] provides
support for treating the model features independently.
With this approximation, we can formulate the likeli-
hood function for ¢ as the product of the probability
distributions of these distances:

m
Lty = [ »(Ds;0), ®)
=]
where I'(Ui;t) is the probability distribution function
(PDF) of Dias a function oft. Taking the logarithm
of (5) yields:

In L(t) =Y Inp(Dist) (6)
i=1
With a particular PDF this yields a measure equiv-
alent to Ns(t(M),I). The PDF necessary for this to
be the case satisfies:

1xlz'<f)f;t)={ bk (7)
1

T'his probability distribution function is two-valued
as inthe conventional Hausdorft matching formula-
tion. If there is support for the model feature in the
image at this position (i.e. animage feature lies with
& of it), then some constant probability is assigned to
p(D;;t),otherwise some smaller constant probability
is assigned to p(D)i;t). The precise values of k1 and ko
are unimportant in this analysis as long as k2 > 0. In
practice, we use k1 = O andk2 = 1.

Now, let us address the assumption implicit in this
formulation that the model appears exactly once in
the image. If we have are seeking models that may
appear more than once in an image, or not at all,
wemust only set some threshold on (6), as is usually
done in Hausdorfl matching formulations. The model
positions that surpass the threshold correspond to the
likely positions of the model in tile image.

ifD; <6

otherwise

4 Using the probabilistic formulation

This section explores some of the advantages that
arc yielded by the probabilistic foriulation of Haus-
dorft matching.

4.1 Uncertainty in the image features

The probabilistic formulation of Hausdorfl match-
ing allows the formal treat ment of uncertainties in the



image features. For example, we may have a teature
detector that yields uncertainty estimates for the po-
sition and/or the existence of the feature. A feature
that is less likely to exist in theimage, or for which
the position estimate isinaccurate, might be weighted
lessin the matching process, and for features within -
accurate position estimates, the allowable positions of
model points that canmatch themshould be larger.

In order to treat these issues, we modify the PDF
of our measurements, IJi. Fach image point (indexed
by j) may be assigned a probability of existence, ¢;,
and a uncertainty radius, r;.Wenow define:

by kol A Jtmg) ~ Gl <1y
Inp(D;;t) = max { ! \ S A0 [eon) =l <y
']

1<j<n otherwise

(8)
This allows image features tobe weighted by their
probability of existence and to contribute to anarbi-
trary radius in the image. Whileimage features with
larger positional uncertainties contribute to a larger
area in the image, their contribution at each position
is less. Once again, the constants, K1and k,, are irrel-
evant to finding local maxima and weusek1 = O and
ks = 1.
We can vary the probability distributions more sig-
nificantly, if desired. For example, we may use a nor-
mal distribution with a constant additive term:

PDit) = max by 4 by IHmmb I ()

This distribution models the case where the error in
feature localization has approximately a Gaussian dis-
tribution. The added constant allows for cases when
the feature is not found at all.

Note that the eflicient search strategy discussed
above does not work directly with these changes. We
require some modification to the search strategy to
perform matching with this formulation.

4.2 Prior probabilities of model positions

In some applications, we have prior knowledge of
the likelihood of various model positions being cor-
rect. Forexample, in tracking applications (eg. [2. 5])
wemay use the previous position of the object being
tracked and its velocity to predict thenext position of
the object. It is often reasonable to model the prob-
ability distribution function of the error inposition
with a normal distribution:

2 a
bty

€ 207 (1o)

where’a, and oy are the ditterences in the position from
the position estimate, and ¢ isthe standard deviation
of distribution.

Iu tile case where the prior probability of each
model position is not uniform, let f(t) be the prior
probability of positiont. Wenow have:

Lty = f T woist) (11)

i=1
Taking the logarithm yields:

m
I L(t):lnf(t)+Zlnp([)gl) (12)
1=1

It is relatively easy to incorporate this information
into the efficient searcli strategy. When we compute
Ac,wemust only include the maximum decrease (or
minimumincrease)in the first term 011 the right side of
( 12) whendetermining whether a cell can be pruned
to ensure that we do not rule out any cell than can
contain a valid position.

The use of prior information as to the likelihood of
various model positions being correct yields the addi-
tional benefit that we have boundsintheimage on the
space we need to search. Ve need not examine any po-
sition for which in f(¢) is so small that the sum with
the best possible score for each of tile model pixels
could notsurpass the score for the best known posi-
tion (or some threshold if we seek all positions with
scores above the threshold).

5 Efficient algorithm

Asnoted above, some of the possible modifications
that can be made to the matching formulation require
that the search strategy be rethought. This section
discusses techniques that allow the space of possible
model positions to be searched efficiently for positions
that satisfy some matching criterion according to the
probabilistic formulation of Hausdorflf matching.

Let us first note that a brute force method can be
constructed by determining, for each pixel location
in theimage, the value of lnp(1i;t), since p(D;;t)
is independent of the particular model feature; only
the position that { maps i into the image is impor-
tant. We can thus compute atransform of the image,
denoted by P(X) = {p(X; t) | t(m) = X}, where
\ = [ry]" is apixel location in theimage, according
to Equation (8) or Equation (9). We call this the fea-
Lure probability transform of the image. Each possible
position of the modelcanthen be tested by probing



this transform at the location that the position maps
each model feature, summing themn,and determining
if the sum meets the criterion.

Now, to search the space efficiently, we adapt the
multi-resolution search strategy discussed previously,
where we attempt to prune large cells of the transfor-
mation space. Recall that in this search strategy, we
compute, for each cell that is examined, the discrete
model position closest to the center of the cell and
image-mapped radius of each cell, denoted by c and
A, respectively. I'hen, each of the model features is
tested todetermine if there could be a position within
the cell where the modelfeature is matched byan im-
age feature up to the alowable error.

In the new formulation, we instead want to de-
termine the maximumm conditional probability that a
model feature could have with respect to any model
position in the cell. While itis not efficient to compute
these values upon demand, they are a function only of
the image-mapped radius of the cell and the position
in the image. If we take care to ensure that all of the
cells at each level of the search have the same dimen-
sions, we can efficiently compute all of the values at
once.

Let Ay be the mmaximumimage-mappedradius over
the unpruned cells at level I.Note that for many
transforination spaces (translations, for example) AC
depends only on the size of the cell, not the cell posi-
tion. So, if all of the cells atlevel 1, have the same di-
mensions, then they also have the same image-1napped
radius. We compute, for each level of the tree, a dila-
tion of P(X') that yields, for each pixel, the maximum
value over the prescribed distance, Al,:

Pa,(X) =

_max
Ye{X}dSa,

P(}) (13)

Now, if we sum the probes of F’a, () at the lo-
cations where ¢ maps each of the model points and
the result still does not satisfy thematching criterion,
then we can prune the entire cell. We must precom-
pute each relevant F’a, (X) prior to the search, if a
deptll-first or best-first search is used, but we need
only store a single Pa,(X) a a time, if a bread th-
first search strategy is used instead. The remainder of
the search strategy remains the same.

6 Results

This section discusses the results of applying these
techniques to both a synthetic problem,where we are
concerned with matching two-dimensional data, and a

o2l

real application, where we localize amobile robot by
matching tllree-dimensional range maps.

6.1 Synthetic experiments

We first tested these techniques in controlled exper-
iments where exact ground truth was available, since
the image feature data was generated synthetically.
We chose a simple problem domain (translation of iso-
lated feature points) under demanding conditions to
demonstrate the superiority of the probabilistic for-
mulation. This experiment generated random model
features (to subpixel accuracy). The model was trans-
lated randomly and placed iu the image with consid-
erable occlusion, clutter, and noise. Scc [9] for details.

Over 10000 trials, the conventional Hausdorfl
matching method yielded 1293 instances where an in-
correct match had a higher score than the correct
match, while the probabilistic formulation, using a
probability distribution similar to (9), yielded 71.5
such failures on the same images. The probabilistic
formulation thus yielded superior recognition of the
feature patterns.

We also tested the localization accuracy of thetech-
niques. Note that a lowerbound on the average accu-
racy of matching of 0.25 pixels in each direction exists,
since matching is performed only to pixel accuracy.
Inthe successful trials, the probabilistic formulation
yielded an average localization error of 0.36 pixels in
each direction, while the conventional method yielded
an average error of 0.48 pixels. The average error of
the conventional method was thus over twice as far
from the theoretical minimum as with the probabilis-
tic formulation.

6.2 Mobile robot localization

While the syuthetic problem described above yields
positive data with respect to the performance of the
probabilistic formulation of Hausdorff matching, the
real test, of course, is in real applications. We have
previously implemented a mobile robot localization
method using conventional Hausdorfl matching meth-
ods [8]. Here we compare this system to a new imple-
mentation using the probabilistic formulation.

The motivation for studying this problem is to al-
low the next generation of Marsrovers to have greater
autonomy from the lander andfrom human operators.
The basic method that isused is to generate a range
map of the terrain near the robot through stereo vi-
sion [7]. This range map is trausforimed into a three-
dimensional occupancy map describing the terrain (see
Figure 2) and it is then compared against a previously



Figure 2: Range maps are computed using sterco vision.
(a) Left image of a stereo pair. (b) Surface extracted from
the stereo pair.

generated occupancy map of the terratn to determine
the relative position between the maps. For exam-
ple, it can be compared to a range map generated
from previous robot positions, or to a map generated
prior to the robot activity by some other means[8].
While the matching techniques described here have
been discussed interms of two-ditnensional edge maps,
the generalization tothree-dimensional surface maps
is straightforward.

Inanexperiment over 13 camera positious, where
the groundtruth was measured by hand, the previ-
ous implementation using the conveutional Hausdorff
matching method hadan average error of 0.050 me-
ters, while the new implementation yielded an average
error of 0.042 meters. It is likely tha human error in
collecting the ground truth is responsible for a signifi-
cant amount of the remaining error. lnsimilar exper-
1ments where the cameras were panned by 25 degrees,
but werenot translated, the error was reduced from
0.011 meters to 0.004 meter-s. The probabilisticforinu-
lation of Hausdor{f matching thus yielded significantly
unproved results in this problem domain.

7 Summary

The primary contribution of this paper is a oew
formulation of Hausdorft matching interms of max-
imum likelihood estimation. This formulation seeks
local maximain the likelihood function of position of
the model with respect to the image, where it is -
plicitly assumed that the model appears in the uimage.
However, this formulation can be applied equally well
when the model does not appear in the image if an

appropriate threshold is used to determine which lo-

cations are output as likely model positions.

This formulation yields severa advantages over pre-
vious workinthis area. First, feature uncertainties,in
boththe posit ionand existence of the features, cau be
t rest edformally inthe framework. Second, smoothly
varying probability dist ribution functions can be used
that eliminate the sharp boundary inherent in the
conventional two-valued support function. In addi-
tion, it is simple to incorporate prior knowledge shout
the probability distribution of model posit ionsinthe
matching processin this forimulation.

We have described new techniques for perform-
ing matching efficiently inthis formulation. I xper-
iments on synthetic data iimply that the new tech-
niques yteld performance superior to the standard for-
mulation with respect to both recognition and local-
ization. Finally, we have applied this technique to the
self-local ization of a mobtle robot in a natural environ-
ment using range maps from stereo vision. Improved
results were also obtained in this domain.
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